
NASA/CR-2002-211451

ICASE Report No. 2002-3

= =

- i

= :

=

= ,

Loops of Superexponential Lengths in One-rule String

Rewriting

AIfons Geser

ICASE, Hampton, Virginia

_L

February 2002

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role. ii

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides
access to the NASA STI Database, the

largest collection of aeronauticaland s-l_acel
science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and
development activities. These results are

published by NASA in the NASA STI Report
Series, which includes the following report

types:

$ 'I_CHNICAL PUBLICA_ON. Reports of

COmpleted research or a major significant

phase of research that present the results
Of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA's
counterpart of peer-reviewed formal

professional papers, but having less
stringent limitations on manuscript

length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are
preliminary or of specialized interest, _

e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATIONS.

Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings Sponsored or

cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL _ANSLATION. English-
language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that complement the
STI Program Office's diverse offerings include

creating custom thesauri, building customized
7aiabases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

Email your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA STI
Help Desk at (301) 621-0134

Telephone the NASA STI Help Desk at
(301) 621-0390

• Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

|

[

|

[

[

m.

i

|

i

[
E

E

t

NASA/CR-2002-211451

ICASE Report No. 2002-3

Loops of Superexponential Lengths in One-rule String

Rewriting

AIfons Geser

ICASE, Hampton, Virginia

ICASE

NASA Langley Research Center

Hampton, Virginia

Operated by Universities Space Research Association

February 2002

=_ _ _ s£ k :_ _ _ _ _ _

Available from the following:

NASA Center for AeroSpace Information (CASI) Nati6nalqV6h-ni-6al lnformaiion Service (NTIS)_ __.: ___:_: -i :_-ii:,_: _

7121 Stahdard Drive 5285 Port Royal R0ad :_: :: i _

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

LOOPS OF SUPEREXPONENTIAL LENGTHS IN ONE-RULE STRING REWRITING*

AI,FONS GESER t

Abstract. Loops are the most frequent cause of non-termination in string rewriting. In the general

case, non-terminating, non-looping string rewriting systems exist, and the unih)rm termination problem is

undecidable. For rewriting with only one string rewriting rule, it is unknown whether non-terminating,

non-looping systems exist and whether uniform termination is decidable. If in the one-rule case, non-

termination is equivalent to the existence of loops, as McNaughton conjectures, then a decision procedure

for the existence of loops also solves the uniform termination problem. As the existence of loops of bounded

lengths is decidable, the question is raised how long shortest loops may be. We show that string rewriting

rules exist whose shortest loops have superexponential lengths in the size of tile rule.

Key words, string rewriting, semi-Thue system, uniform termination, termination, loop, one-rule,

single-rule

Subject classification. Computer Science

1. Introduction. Uniform termination, i.e. the non-existence of an infinite reduction sequence, is an

undecidable property of string rewriting systems (SRSs) [8], even if they comprise only three rules [13]. It is

open whether uniform termination is decidable for SRSs with less than three rules.

An SRS admits a loop if there is a reduction of the form u --++ But. Every looping SRS is non-terminating.

The converse does not hold, even for two-rule SRSs [6]. McNaughton [15] conjectures that every one-rule

non-terminating SRS admits a loop.

If McNaughton's conjecture holds, and if the existence of loops is decidable for one-rule SRSs, then the

uniform termination of one-rule SRSs is decidable. Existence of loops of bounded length is decidable [6].

This immediately raises the question whether there is an algorithm that outputs upper bounds of lengths of

shortest loops. On this account it is most interesting how long shortest loops can be.

The purpose of this note is to prove that there are one-rule SRSs that admit loops of superexponential

lengths in the size of the rule, but no shorter loops. This is in harsh contrast to the common belief that

loops are simple. Specifically, we prove the following result.

THEOREM 1.1. For all p > 2q, q > 1, r >_ 2, the string rewriting rule

R = {10P--+0"V0 q}

admits loops of length 1 + _i=o ri where g = [_q] but no shorter loops.

Theorem 1.1 follows immediately from Lemmas 4.6 and 6.17, which we will prove below.

By choosing q = 1 and keeping p > 2 fixed, we get a family of rules where the shortest length of loops is

polynomial in r with degree p - 1. By choosing q -- 1 and keeping r > 2 fixed, we get shortest loop lengths

exponential in p with base r. By choosing q = 1 and r = p the minimal loop length is greater than i_-_-

This shows the claimed superexponential growth.

"This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NASI-970,16

while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199, USA.

tAddress: ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681. Email: geser©icase.edu

Tile paper is organized as follows. We will show: in Section 3 that each R has a loop; in Section 4 that

the length of the loop is ms claimed; in Section 5 that the start string of a shortest loop has a special shape;

and in Section 6 that these strings initiate no shorter loops.

2. Preliminaries. V_ assume that the reader is familiar with termination of string rewriting. SRSs

are also called semi-Thue systems.

For an introduction to string rewriting see Book and Otto [1] or Jantzen [9]. The study of termi-

nation in one-rule string rewriting has been initiated by Kurth in his thesis [11]. Further work includes

/vlcNaughton [14, 15, 16], Senizergues [19], Kobayashi et al. [20, 10], and Zantema and Geser [6, 21, 4, 5].

Since SRSs can be encoded as term rewriting systems where letters are unary function syinbols, the results

of termination of term rewriting [3] apply.

An SRS R is a set of string rewriting rules, i.e. pairs of strings denoted as u -+ v. The reduction step

relation, also denoted by -4, is defined by sut --+ svt for all strings s, t and string rewriting rules u -4 v.

Here st denotes the concatenation of strings s and t.

A loop is a reduction Of the form t -++ utv where u, v are strings. An SRS R is said to admit a loop if a

loop t _ + utv exists.

The string t is also called a prefix., u a suffix of tu. Any string utv is said to contain t as a factor. The

set. of overlaps of a string u with a string v is defined by

OVL(u,v) = {w • E + t u = u'w,v = wv',u'v' # ¢,u',v' • E*} .

3. The Rule Admits a Loop. Throughout this paper we assume strings over the two-letter alphabet

{0,1}, and we speak about one-rule SRSs R = {10 p--* 0Pv0q}, for somep 2 2q, q > 1, r > 2. In this

section we show that each R has a loop. -_

DEFINITION 3.1. Let strings t_, i >_ 0 be defined recursively by : i

=_

to = 1,

ti+l = oqt_ •

The following lemma is crucial for the proof that R admits loops.

m p _..+*LEMMA 3.2. t k 0 np-qt,n aq holds/or all k, rn > O.v _k+l " - --

Proof. Proof by induction on (k, m) ordered lexicographically. The case m = 0 is trivial, so assume
=

m > 0. Case 1: k = 0. Then

t_0 p = t_-' 10 v -+ t_-10Pl_0q --+* 0P-qt_-_0ql_0 q = 0P-qt_'0 q,

by defilfition of to, inductive hypothesis for (k, m - 1), and definition of tl, respectively. Case 2: k > 0. Then =

tr_ Op = ÷m-_oqtrk-lOP --+* _k _, u _k_, " "k+l " _k '_ " _k+l" ,_k _rn-lt3qf'tP-q_rflq --)'* flP--q÷m-lflq_rflq = t3P-q_rn clq

by definition of tk, inductive hypothesis for (k - 1, r), inductive hypothesis for (k,m - 1), and definition of

tk+t, _spcctively. 0

By definition tt. is a factor of tk+l. Now if tk0 p is a factor of tj,.+10 q then we have a loop. To this end k

has to be great enough.

EXAMPLE 1. Let p = 2, q = 1, r = 2. Then R = {100 -+ 00110}. _ have to = 1, tl = Ototo = 011,

t2 = Otltl = 0011011, t3 = Ot2t2 = 000110110011011, and so forth. The string too p = 100 is not a factor

2

of tlO q = 0110. Neither" is tlO v = 01100 a factor of t20 q = 00110110. However t30q = 0001101100110110

contains t20 r as a factor' at the underlined occurrence.

The problem is traced back to finding a factor 0p within tk. The following property of ti is the key to

the solution.

LEMMA 3.3. For all k > O, the following hold:

1. 0qk is a prefix of t_..

2. 0 qk+l i8 not a factor of tk.

Proof. Straightforward induction on k. U

If k is chosen great enough then 0p fits into 0ak. Let [x] denote the least integer i sudl that i > x.

LEMMA 3.4. Let £ = [2]. Then tiO p --+* oP-qQ+loq is a loop.

Proof. By Lemma 3.2 for m = 1 we get a reduction

teO p -4" oP-qte+lO q . (3.1)

Now suppose that e = [qe], whence q(_> p. The following analysis shows that in this case Reduction (3.1)

indeed forms a loop, i.e. that its left hand side Q0 p is a factor of its right hand side, oP-qte+lO q. For some

string w we get

OP-qte+_O q = OP-qoqt_o q = op-qoqt_-2teteO q = ov-qo_t_e-2t_OqewO z = o_-qoqt_-2teoPoqe-PwO q

by definition of te+l, the premise r >_ 2, Lemma 3.3, and the property q(>_p, respectively. The occurrence

of te0 p is underlined. []

4. The Loop has Superexponential Length. Now let us calculate the lengths of reductions t_0 v ---_*

0v-qte+10 q of Lemma 3.4. We start with a recursive specification of the lengths of reductions of Lemma 3.2.

Let N denote the set of non-negative integers.

DEFINITION 4.1. The function f : N x N --> N is defined recursively by

f(k, 0) = 0,

f(O,m + 1) = 1+ f(0,m),

f(k + l,m + l) = f(k,r) + f(k + l,m) .

The following properties of f are obvious.

PROPOSITION 4.2. f is well-defined and a total function.

m p __+*PROPOSITION 4.3. f(k,m) equals the length of the reduction t k 0 ap-qt,,_ nq constructed inv "kq-1

Lemma 3.2.

It is straightforward to check that the following non-recursive definition of f satisfies Definition 4.1:

PROPOSITION 4.4. f(k, m) = mr k for" all k, m >_ O.

From Propositions 4.3 and 4.4 we get immediately:

PROPOSITION 4.5. The length of the reduction in Lemma ,?.4 is r e.

The length of the loop in Lemma 3.4 is not yet minimal. A refinement leads to the following shorter

loop. We will prove its minimality in the subsequent sections.

LEMMA 4.6. Let f = [_]. Then there is a loop

lO(p-q)(t+l)+ q_n OPlr-lo(p-q)tt$oq

of length n = I + _-_i=o ri"

Proof.By Lemma 3.2 and Proposition 4.3 we have the reduction

10(P q)(t_+l)+q _..+

0Pl r-I toO(P--q)_+q ...+ r °

OPlr--lop-qtlO(p--q)(g 1)+q _+r I

OPlr-lo(p-q)(g-1)tt_lO(p-q)+q __+r e-I OPlr-210(p-q)tttoq .

Now t, has a prefix-0 qr...................by Lemma 3.3, and So a prefix 0P_by definition of g. Togethe r with the underlined

string this forms a reoccurrence of the initial string, lO (p-q)(t+l)+q = IO(P-q)toP, as a factor in the final

string. So the given reduction is indeed a loop. [3

5. How Shortest Loops Start. To prove that there are no loops shorter tilan those of Lemma 4.6,

we first restrict the set of strings that may initiate shortest loops. To this end we employ the fact that t,be

existence of loops is characterized by the existence of looping forward closures. Forward closures [12, 2] are

restricted reductions. The following characterization of forward closures by Hermann is convenient.

DEFINITION 5.1 (Forward Closure 0[1., 2, i]). The set of forward closures of an SRS R is the least set

FC(R) of R-reductions such that

fcl. if (1 --_ r) E R then (l -+ r) C FC(R),

fc2. if(st --*+ tlx) • FC(R) and (xl'2 -4 r2):C:_such that x ¢ c then (s,l'.2 _4 ttlXl_ --*+ tlr2) • _C,(R)I

' " ' "--++ ' " FC(R).re3. /f(81 --_+ ttl'.,tl) • FC(R) and (12 -4 r2) C R then (sl -++ tll2t 1 tlr.ztt) •

We (:all a forward closure of the form s -++ usv a looping forward closure.

THEOREM 5.2 ([6])i An SRS admits a loop if and only if it has a looping forward closure. Moreover if

there is a loop of length n then there is a looping forward closure of length at most n.

LEMMA 5.3. Every forward closure of R has the form 10 (p-q)k+q --_* wlrO q for some k > 1 and some

string w.

Proof. By induction on the definition of forward closure. Case fel is trivial. For Case]e2, let sl =

t0 (v-q)/'+q, t'|x ----Wlr0 q, xl_ = l0 p, r2 = 0Plr0 q. Observe that x must be x = 10 q. This implies t'1 = wl *-l,

I'2 = 0v-q and we get

sll_ = lO(P-q)k+qoP-q ---- 10 (p-q)(k+l)+q --4* wlr-1OPlr0q = t_r2

as the composed forward closure. It has the claimed form.

Case fc3: Let st 10 (v-q)k+q ' " = wlrO q, 12 r2= , ttlet 1 = l0 p, = 0Plr0 q. By p > q, 12 cannot be a factor

of 1_0 q. Nor can it left overlap with it: OVL(I._, V0q) = 0. Therefore t_' is longer than lrO q. in other words

a string w' exists such that t_' = w'V0 q. Hence w = t_12w' and the composed forward closure is

St = 10 (p-q)k+q --')* tllr2W'lrO q = tir2t 1'"

which has the claimed form. 0

Next we show that a forward closure can only issue an infinite reduction, and so a loop, if its left hand

side is large enough.

LE,MMA 5.4. O(V-q)k+qtkoq is irreducible for all k < [q_].

Proof. Suppose that O(P-q)t'+qtt:oq is reducible. Then tk is reducible; but then tk-t contains a factor 0v;

by Lemma 3.3 then q(k i)_>p;sok>l+[Eq].[3

4

THEOREM 5.5 ([18]). Let R be nOn-overlapping and let s be an arbitrary string. Then s has an infinite

reduction if and only if all reductions starting from s can be prolonged infinitely.

LEMMA 5.6. If 10 (p-q)k+q issues an infinite reduction then k __ t + [_].

Proof. First we observe that R is non-overlapping, i.e. its left hand side, 10 v, has no overlap with itself:

OVL(10 p, 10p) = O. Now there is a reduction s = 10 (p-q)k+q -->* O(P-q)ktkoq ---- 8 _ by Lemma 3.2 applied k

times for m = 1. If k _< [Eq] then this reduction cannot be prolonged as its final string, s r, is irreducible by

Lemma 5.4. By Theorem 5.5 therefore s issues no infinite reduction for k _< [_q]. D

6. Shorter Loops Do Not Exist. We still have to prove that strings 10 k(p-q)+q, k _ 1 + e = 1 + [qE],
t-1

initiate no loops shorter than 1 + _-_i=0 ri"

First let us switch from strings s C {0, 1}* to their tuple representation T(s) E N*. Please note that our

notion of tuple representation differs from the literature [17, 11].

DEFINITION 6.1. A string s E {0, 1}* of the form

8 = Ox°(p-q)+Y°qlO xl(p-q)+ylq ... 10 xk(p-q)+y_q

for some k, xo, . . . , xk E N and 0 <_ Yo, . . . , Y_. <_ _ - 1 is said to have a tuple representation

T(s) = (x0,...,Xk;Yo,...,yk) •

The guard Yi _< _ - 1, which is equivalent to y_q < p - q, ensures that the x_ and Yi are uniquely given by

x_(p - q) + Yiq. Some strings over the alphabet {0, 1} may have no tuple representation, e.g. 0 has no tuple

representation if p = 4, q = 2. For our purposes, however, it is reassuring to know that 10 k(p-q}+q has a

tuple representation for any k and that certain rewrite steps preserve the existence of tuple representation.

We will conveniently speak about rewriting steps at position m:

DEFINITION 6.2. Let s have a tuplc representation, T(s) = (Xo,..., xk ; Yo.... , Yk), and let 0 <_ m <_ k- 1.

Then s _,n s' if xm+! > O, Y,_+I > O, and

s_ = O_O(p-q)+yoql... lOX.,(p-q)+ymaOPlrOqO(z_+_-l)(p-q)+(y,_+_-Uq ... 10xk(p-q)+y_q

PROPOSITION 6.3. If s has a tuple representation then s --_ s' if and only if s --_,_ s r for" some

0<rn<k-1.

DEFINITION 6.4. Let T(s) = (Xo,..., xk; Yo,-.. ,Yk) and let 0 < m <_ k-1. Then a rewrite .step s -_m s'

is called ordinary if y,,, < _ - 1. Else the step is called extraordinary. A reduction is called ordinary if every

step is ordinary. An extraordinary reduction has at least one extraordinary step.

Ordinary rewrite steps preserve the existence of tuple representation:

PROPOSITION 6.5. Let T(s) -- (Xo,...,xk;Yo,...,yk), let 0 <_ m <_ k- 1, and let s _,,_ s' be ordinary.

Then s' has the tuple representation

T(s') = (xo, ... ,Xm-l,X,,, + 1,0,... ,0,x,_+l - 1,xm+2,... ,xk;

r--1

Y0,..-,Ym-l,Ym + 1,0,... ,O,y,,+l,ym+2,... ,Yk) •

r--1

In contrast, extraordinary steps may create strings that have no tuple representation.

EXAMPLE 2. Let s have the tuple representation T(s) = (2, I;/' - 2, 1), and let rn = O. Then we have

S _- O9"(P--q)+(g--2)qlO p --}rn O3(p--q)÷(_--l)qlO q _-- 0 4(p-q)+(q-plOq .

For p = 5, q = 2 we get f = 3 and fq - p = 1 which has no representation as an integer multiple of q. So the

st_ing 04(p-q)+tq-PlO q has no tuple representation.

Our goal is to demonstrate that, in any reduction starting from 10k(p-q}+q, the first extraordinary step

takes place only as late as the completion of the loop.

We are now going to construct two functions h, h' that estimate the length of the shortest ordinary

reduction to the next string that has the factor 10 (p-q)_, and the length of the shortest extraordinary

reduction, respectively. These two functions will be based on the following auxiliary functions gk.

DEFINITION 6.6. The functions gk : N k+l _ N, k E N are defined by

gk(XO,...,Xk) = r_--_(r _+''+_ +r _2++_ +"'+r _ --k) .

gt. does not. depend on its first argument. This is intentional.

The following derived properties will be useful below.

PROPOSITION 6.7. For all k > 1,x0,... ,xk the following hold:

1. gk(XO ,Xk) = gk-l(Xo,...,xk-1) if Xk = O;

2. g_.(zo,... ,xk) > gk-_(x_,... ,xk);

3. gk(xo,...,xk) = gk+_-_(Xo,...,xi + 1,0,...,0, Xi+l -- 1,...,xk) + 1 for all 0 < i < k- 1 such that

r--I

xi+l >__1;

4. gk(xo'...'xk) >_ gk(xo + 1,x_,...,x,_i,x, - ilXi+l ,xk) for all 1 < i < k such that x_ > 1;

5. gk is monotone in each argument.

The next lemma is the workhorse of this section. It states that a reduction step decreases by at most

one, the minimal value of all those gk terms which have thc same sum of arguments.

LEMMA 6.8. Let s _ s' be an ordinary step where T(s) = (Xo,...,xk;Yo ,Yk) and T(s') =

X I I("o," ",xk' Y_, ' Then every < < k', zj, xj, _ __" ' ' Yk')" for 1 < i' j' _ ' < ' there exist 1 < i < j < k, zj < x d such

that

gj'-i' (x'i,,..., x_,_,, z_,) >_ gj-i(xi,..., xj-l, zj) - 1,
, i ,

X i, "_- • • • "4- Xj,_ 1 -_- Zj, = X i -4- " " • -4- Xj-I -4- Zj .

Proof. Let 0 < m < k- 1 be determined by the rewrite step s --+ms'. Then by Proposition 6.5

we have k' = k+r 1, •' ' '-- X 0 = XO, • • • _ Xm_ 1 = 2Ctn--l_ X m _ xm + 1, X'm+l = ... -- Xm+r_lt = O:

I I t I ? I

xm+_ = x,_+_ - 1, x_+_+_ = x,,+2, •.., x k, = xk. And we have Yo = Yo, . .., Ym-i = ym-1, Ym = Ym + 1,

Y'm+l = _ ' 'Ym+r-1 -----0, Ym+rt ---- Ym+l, Ym+r+l = Ym+2: -- " ' Yk' ---- Yk.

Let 1 < i' < j' < k' and z5, < x},. The proof is done by case analysis on i' and j'.

' In this case weCase 1:1 < i' < j' < m. Ifj' # m or z}, # x,n + 1 then choose i = i',j = j',zj = zj,.

get

go'- i' (x'i, ' ',...,Xj, l,zj,) = gj-i(Xi,...,Xj-l,Zj) • (6.1)

Elsechoosei = i',j = m + 1,zj = I. Here we use Xm+l > 0 to establish zj <_ xj. We get

gy__,(x'_,,......,x_,_,,z;,) = g.,__(x,, ,x.,_,,.,,, + 1)

= gm+r_i(Xi,... ,Xm_I,X m "}- 1,0,... ,0)

r

---- gm+l-i(Xi,... ,Xm, 1) - 1

= gj-i(Xi,... ,Xj-1, Zj) -- 1,

by Items 1 and 3 of Proposition 6.7.

Case 2: m + 1 < i' < j' < m + r- 1. Then xi, + "- + xj,-1 + zj, = 0. Choose an)' 1 < i < k, and let

j=iandzj=0. Then

g,,__,(x'_,, ' ') = 0 = g0(0)• .. _Xj,_ l_zj,

Case3: m+r<i'<j'<k'. Ifi'_m+rorj'=i'thenchoosei=i'-r+l,j=j'-r+l,zj=z},. We
• !

get (6.1). Else we have i' = m + r and j' > z', and so x i, = Xm+l - 1. In this case let i = m + 1. If z'j, >0

' - 1; else let i < j < j' - r + 1 be the greatestthen let j and zj be defined by j = j' - r + 1 and zj = zj,

number such that xj > 0 and let zj = xj - 1. By xi > O, j and zj are well-defined• Thus we get

gj'-i' (x'i,,.. ' zS, = -_+l-i(xi - 1, xi+l, ...,.j.__.) gj. .xj z_,)

= gj-,(a:i -- 1, Xi+l,...,Xj-l_Zj q- 1)

__ gj-i(xi_ Xi+l,..., xj-1, z j)

by Items 1 and 4 of Proposition 6.7.

_ ' We getCase4: l<i'<mandm+r <j'<k'. Choosei=i',j=j'-r+l,zj=zj,.

gj,_i,(X'i, , ...,Xj, I; ZS,) = gj-i+r-l(Xi, ..., xm + 1,0,. .., 0, a',,+l - 1, ...,Xj-1, Zj)

r-1

= gj-i(Xi,...,Xm,Xm+l,...,Xj-l,Zj)-- 1

!
by Item 3 of Proposition 6.7. Note that ifj' = m+r then xj, = xm+l- 1 =xj-1. So one can always

' < xj as required.' yielding zj = z}, < x j,choose zj = zj, _ _

Case 5: I < i' < m < j' < m + r - 1. This case reduces to Case 1 by the identity

(, , , -)gj'-i' xi,,...,Xj,-1,Zj,) = gm-i'(X i,' ,...,X

due to Item 1 of Proposition 6.7.

Case 6: m + 1 < i' < m + r < j' _< k'. This case reduces to Case 3 t)y the inequality

i f Z f ._ I /• gj,_m_r(Xm+r, Xj,_l, Zj,)g_,-e(xe,, j,) >• _Xj'--I_ __ -.._

due to Item 2 of Proposition 6.7.
! !

These are all cases. In each case it is easy to show that x i, + • •. + x k, = xi + "" + xt.. This finishes the

proof.

DEFINITION 6.9. Let T(8) = (Xo,...,xk;yO,...,yk) and let xl +..-+xk > _. Then h(s) C N is defined

by

h(s) = min{gj_i(xi,... ,Xj-I,Zj) I 1 < i < j < k, zj < Xj,X i -{-''" + Xj-I "k Zj ---- _} .

Well-definedness of h(s) follows immediately from the fact that the minimum is taken from a finite, non-

empty set.

LEMMA 6.10. Let s -4 s' be an ordinary step where T(s) = (xo,...,xk;Yo,...,yk) and T(s I) =

(x_o,... ' ' ' ' > f then Xl "_- " " " nt- Xk > f and h(s) < h(s') + 1.,Xk,;Yo,...,yk,). If x_ +.--+ xk,

' - x_., >_ e that h(s') is defined. If s _,,, s' for 1 < m < k 1 thenProof. The condition x 1 + .. + ensures _ _ -

= ' x_, > t by Proposition 6.5. Else s --*m s' for mxl+-'-+Xk xl+'''+ =Oandthen (xl-1)+ .-+Xk =

x 1' +-''+x k,' _>f- Soxl+-..+xk_>fwhenceh(s) isdefined.

By definition of h(s'), there is 1 < i' < j' _< k', zj, _< x'j, such that both h(s') = gj,_i, (x_,, ... , x},_l, z},)

and x_,' + ... + x},_l + z_, = C. Hence by Lemma 6.8, there is 1 < i < j _< k, zj _< xj such that

h(J) >gj-i(xi,...,xj-l,zj)-I and xi+.-.+xj_l+zj=f .

So h(s) <_gj-s(xi,...,xj-l,zj) <_ h(s') + 1. D

LEMMA 6.11. Let T(s) = (x0,..., Xk; Y0,..., Yk). If s _n ulO(p-q)t v for some strings u, v is an ordinary

reduction then xl + .-. + Xk > f and h(s) <_ n.

Proof. By induction on n. The base case n = 0 is proven by h(s) < g0(g) = 0. For the inductive step let

s --* s' --+_ I ulO(p-q)tv, let x_ +...+ x_, >f, andlet h(s') <n-1. Thusxl +'''+ xk > C and h(s) < n

by Lemma 6.10. Et

With Lemma 6.11 we have a criterion for ordinary reductions. For extraordinary reducti0ns we pursue

a similar line of reasoning. We start witti a lemma akin to Lemma 6.8. If i = j then for convenience let

gj-i(Yi, xi+l,..., xj-1, zj) = go(zj) and let Yi + xi+l + • " • + xj-l + zj = zj. Note that we require zj < yj if

i = j and zj <_ xj else.

LEMMA 6.12. Let s --_ s' be an ordinary step where T(s) (Xo,...,Xk;Yo,...,yk) and T(s') =

' i' j' ' <_ ' and for every 1 < i' -- j' < k',X O' . ! . t !"''Xk"Yo ,Yk')" Then for every 1 < < <_ k', zj, xj, _ _

zj, < yj, there exist 1 < i < j <_ k, zj <_ xj or 1 <_ i = j <_ k, zj <_ yj such that

gj'-i' (Yi', xi'+l,..., xj'-l, zj,) >_ gj-i (Yi, Xi+l,..., xj-t, zj) -- 1,

l I I ?

Yi, +xi,+l +"'+xj,-_ +zj, =y_+xi+_ +...+xj__ +zj .

! t
Proof. Let 0 < m < k - 1 be determined by the rewrite step s _m s'. Case 1:1 < i' = j' <_ k', zj, _ yj,.

!

Ifj' # m or zj, # zm + 1 then go(zj,) = 0 = go(Zj). Else choose .i = m + l,zj = 1. Here we use y,,+_ > 0

to establish zj < yj. V_ get

go(zj,) = g,.(y,, + 1,0 ,0) = g_(ym, 1) - 1 = gj-i(yi,zj) - 1

r

by Items 1 and 3 of Proposition 6.7.

Case2:1 <i'<

Case 2.1: m + 1

and let j = i and zj

j' ___k', < x},.
< i' < j' < m + r- 1. Then yi, + xi,+l +... + xj,-1 + zj, = 0. Choose any 1 < i < k,

--- 0. Then

l l i / =

gj'-i' (Yi', xi'+l," • •, xj,_l; zj,) : 0 = g0(0) .

Case2.2: i' = m + r. Choose = i' - r + l,j = j' - r + l,zj = z' Weget

gj'-i' (y_, xi,, ,. , l, ..,Xj'-t,~j,) =gj-i(yi,xi+l,...,Xj-l,Zj),

? ! 1

Yi, + xi, + ' + xj,-1 + *j, = Yi -1- Xi÷l -[- ''' -1- xj-1 -t- zj

Case 2.3:1 < i' <_m or i' _ m+r and re+r-1 __<j' < k'. We carry over the proof of Lemma6.8,

observing the facts/' ¢ j', i ¢ j, and Y'i' - x'i' = Yi - xi. Then we may conclude from the proof of Lemma 6.8

that

gj'-i' (Yri,, ' ' ' ' "Xi,+l,... , Xj,--1, Zj,) = gj,-i' (x_i,, ..- , xj,-1, ~j')

>_ gj-i(Xi,..., Xj-1, Zj) -- 1

= gj-i(Yi, Ti+I,.-., xj-1, zj) -- 1

and

t I I I I I I l

Yi' + Xi'+l "[- ''' -]- Xj'-I "]- Zj, : (y_, -- Xi,) -]- X i, nt- ''' -}- Xj,_l -}- Zj,

= (y:, - x',,) + xi +... + +

= (Yi - xi) + xi + "" + xj-l + zj

= Yi + Xi+l + "" + xj-i + zj .

This finishes the proof. [q

LEMMA 6.13. Let s --4 s' be an ordinary step where T(s) = (Xo,...,xk;yo,...,yk) and T(s') =

• I ' " _ ' I ' I _ i I k _(Xo, , Yk')" _Yi + xi+l + "'" + xk' --"-" Xk',Yo , > e for some 1 < < then Yi + xi+l + "'" + xk > _ for

some 1 < i < k.

Proof. The claim immediately follows from the following claim. For every 1 < i _ _< k' there is 1 < i < k

such that

!

A = Yi + xi+l +"- + Xk -- (y:, + Xi,+l +''" + X_,) >_ 0 .

The proof is done by ease analysis on i _.

Case 1:1 < i' < m- 1. Choose i = i'. Then

' -1)=0A = xm + xm+l - (xr,n + 0 + ... + O + xm+_) = X,n + X_+I -- (X,,_ + 1 + X,,+I

r--]

Case 2: i' = m. Again choose i = i'. Then

' - (ym + 1 + Xm+_ - 1) = 0A = ym + x,,+l - (ytm + O + """ + O + X,n+r)=ym+x,n+l

r--I

' =1>0.Case3: m+l <i'<ra+r-1. Choosei=m+l. Then A=x,,+_-xm+ _ _

Case 4: m + r < i' < k'. Choose i = i' - r + 1. Then obviously A = 0. This finishes the proof. O

DEFINITION 6.14. Let T(s) = (Xo,..., Xk; Y0,.-., Yk) and let yi + xi+l +"" + Xk > _ for some 1 < i < k.

Then h'(s) E N is defined by

h'(s) = min{gj-i(yi,xi+l,... ,xj-l,z 9) I 1 < i < j <_ k, zj <_xj,yi + Xi+l +''" + Xj-1 + Zj = _} .

Because the minimum is taken from a finite, non-empty set, h'(s) is well-defined.

Using Lemma 6.12 and 6.13, in the same way as Lemma 6.10, one can prove:

LEMMA 6.15. Let s --4 s' be an ordinary step where T(s) = (Xo,...,Xk;Yo,...,yk) and T(s') =

(x_,... x' " ' ' I _ " ' ' > e for some 1 < i' < k' then Yi + xi+i + "'" + xk > C for, k',YO Yk')" "fYi+Xi+l +'''+xk' --

some 1 < i < k, and h'(s) < h'(s') + 1.

Thus we get a lemma like Lemma 6.11:

LEMMA6.16. Let T(s) = (x0,... ,xk;Yo,...,Yk). If there is an extraordinary reduction s --_'_ t then

yi + Xi+l +--- + Xk >_ g for some 1 < i < k, and moreover h'(s) <_ n.

Proof. Let s --+" s' be shortest, i.e. s __+,-1 s' is an ordinary reduction and only the last step s _ --+ t

is extraordinary. The inductive base n = 1 is proven by h'(s) <_ gl(t- 1, 1) = 1. For the inductive

step s-4 s" _+,-2 s' let Yi+X'i+a +'"+xtk , >-- g for some 1 _< i' _< k' and let h'(s") _< n-1. Thus

Yi + Xi+l +... + Xk _> g for some 1 < i < k and h'(s) < n by Lemma 6.15. 17

Now let us prove that the length of the loop in Lemma 4.6 is minimal.

r for :=LEMMA 6.17. R admits no loops of length less than 1 + z-.,_=0

Proof. Suppose that s --++ usv is a loop of minimal length. By Theorem 5.2 we may assume that

s .4+ usv is a forward closure. By Lemma 5.3, s = 10 (p-q)a+q for some k >_ 0. By Lemma 5.6, k >__1 + g.

Since the loop is a forward closure, all zeroes in s must be consumed during the reduction. By OVL(g, e) = 0

we may assume that. the steps are rearranged to s .4k (0PV-1)kl0q = s' _'* usv. Case 1: s' -_'_ usv is

ordinary. Then we get h(s') <_ n by Lemma 61il and by 10 (p-q)t prefix of s. We compute h(s') as follows:

h(s') = g(r_U(t_U(1,O,...,O, 1,0,...,0, 1,...,0,...,0,1)

r--2 r--2 r--2
% •

g--1

1

= __ l ((r-1)r: a + (r _ l)r t-z + ... + (r-1)r 1-(r-1)(g-1))

t_-i

= Eri--[.

i=0

So the total length of the reduction is k + n _> k + h(s') = k +)--ff-li=0ri - g -> 1 + Ef-o 1 &. Case 2: s' -+_ usv

is extraordinary. Then we get h'(s') < 'n by Lemma 6.16. It turns out that h'(s') = h(s). So, no matter

t-1 rl"whether the reduction s _'_ usv is ordinary or not, we get k + n _7 1 + _-_i=0 This finishes the proof. ['l

Acknowledgements: I am grateful to Robert McNaughton, David Musser, and Paliath Narendran for

their encouragement to pursue this research and to Hanne Gottliebsen for reading the manuscript.

REFERENCES

[1] R. BOOK AND F. OTTO, String-rewriting systems, Texts and Monographs in Computer Science,

Springer, New York, 1993.

[2] N. DERSHOWITZ, Termination of linear rewriting systems, in Proc. 8th Int. Coll. Automata, Langmages

and Programming, LNCS 115, Springer, 1981, pp. 448 458.

[3] , Termination of rewriting, J. Symb. Comput., 3 (1987), pp. 69-115. Corrigendum: 4, 3, Dec.

1987, 409-410.

[4] A. GESER, Note on normalizing, non-terminating one-rule string rewriting systems, Theoret. Comput.

Sci., 243 (2000), pp. 489-498.

[5] --., Decidability of termination of "grid" string rewriting rules, SIAM J. Comput., (2001). Accepted

for publication.

[6] A. GESER AND H. ZANTEMA, Non-looping string rewriting, Theoret. Informatics Appl., 33 (1999),

pp. 279 301.

[7] _I. HERMANN, Dwergence des syst_mes de rddcriture et schdmatisation des ensembles infinis de termes,

habilitation, Universit6 de Nancy, France, Mar. 1994.

10

[8] G. HUET AND D. S. LANKFORD, On the uni]orm halting problem for term rewriting systems, Tech.

Report 283, INRIA, Rocquencourt, FR, Mar. 1978.

[9] M. JANTZEN, Confluent string rewriting, vol. 14 of EATCS Monographs on Theoretical Computer

Science, Springer, Berlin, 1988.

[10] Y. KOBAYASHI, M. KATSURA, AND K. SHIKISttIMA-TSUJI, Termination and derivational complexity

of confluent one-rule string rewriting systems, Theoret. Comput. Sci., 262 (2001), pp. 583 -632.

[11] W. KURTH, Termination und Konfluenz yon Semi-Thue-Systemen mit nut einer Regel, dissertation,

Technische UniversitSt Clausthal, Germany, 1990.

[12] D. S. LANKFORD AND D. R. MUSSER, A finite termination criterion, tech. report, Inf()rmation Sciences

Institute, Univ. of Southern California, Marina-del-Rey, CA, 1978.

[13] Y. MATIYASEVITCH AND G. SI_NIZERGUES, Decision problems for semi-Thue systems with a few rules,

in IEEE Symp. Logic in Computer Science'96, 1996.

[14] R. McNAUGHTON, The uniform halting problem for one-rule Semi-Thue Systems, Tech. Report 94-18,

Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, Aug. 1994. See also "Cor-

rection to :The Uniform Halting Problem for One-rule Semi-Thue Systems'," unpublished paper,

Aug. 1996.

[15] --, Well-behaved derivations in one-rule Semi-Thue Systems, Tech. Report 95-15, Dept. of Computer

Science, Rensselaer Polytechnic Institute, Troy, NY, Nov. 1995. See also "Correction by the author

to 'Well-behaved derivations in one-rule Semi-Thue Systems'," unpublished paper, July 1996.

[16] --, Semi-Thuc Systems with an Inhibitor, J. Automated Reasoning, 26 (1997), pp. 409 431.

[17] P. NARENDRAN AND F. OTTO, The problems of cyclic equality and conjugacy for finite complete

rewriting systems, Theoret. Comput. Sci., 47 (1986), pp. 27-38.

[18] M. J. O'DONNELL, Computing in systems described by equations, LNCS 58, Springer, 1977.

[19] G. S_NIZERGUES, On the termination problem .for one-rule Semi-Thue Systems, in RTA-96, LNCS 1103,

Springer, 1996, pp. 302 316.

[20] K. SHIKISHIMA-TSUJI, M. KATSURA, AND Y. KOBAYASHI, On termination of confluent one-rule string

rewriting systems, Inform. Process. Lett., 61 (1997), pp. 91-96.

[21] H. ZANTEMA AND A. GESER, A complete characterization of termination of OPl q _ 1_0 _, Applicable

Algebra in Engineering, Communication, and Computing, 11 (2000), pp. 1 25.

ll

REPORT DOCUMENTATION PAGE Form Ap_oveO
OMB No. 0704-0t88

Public reportingburden for thiscollection of information is estimatedto averageI hourper response,including the time for reviewinginstructions, searchingexistingdata sources.
gathering and maintaining the data needed,andcompleting and reviewingthe collectionof information. Sendcomments regardingthis burden estlmateor any other aspectof tb s
collection of information, including suggestionsfor reducingthis burden to Washington HeadquartersServices Directorate for Information Operationsand Reports,1215Jefferson
Day s H ghway,Suite 1204, Arlington, VA 22202-4302,and to the Of.riceof. Management and Budget,PaperworkReductionProject (0704-0188),Washington. DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Febrnary 2002 Contractor Report

4. TITLE AND SUBTITLE

Loops of superexponential lengths in one-rule string rewriting

6. AUTHOR(S)

Alfons Geser

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(Es)"

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

REPORT NUMBER

ICASE Report No. 2002-3

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2002-21]451

ICASE Report No. 2002-3

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To be sublnitted to the International Conference on Rewriting Techniques and Applications (RTA).

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Loops _e the most frequent cause of non-termination in string rewriting. In the general case, non-terminating,

non-looping string rewriting systems exist, and the uniform termination problem is undeeidable. For rewriting

with only one string rewriting rule, it is unknown whether non-terminating, non-looping systems exist and whether

uniform termination is decidable. If in the one-rule case, non-termination is equivalent to the e:dstence of loops, as

McNaughton conjectures, then a decision procedure for the existence of loops also solves the uniform termination

problem. As the existence of loops of bounded lengths is decidable, the question is raised how long shortest loops

may be. We show that string rewriting rules exist whose shortest loops have superexponential lengths in the size of
the rule.

114. SUBJECT TERMS

string rewriting, semi-Thue system, uniform termination, termination, loop, one-rule,

single-rule

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

